Software

Profiling your application
with Intel® Vtune™

Amplifier and Intel®
Advisor

Paulius Velesko

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core
— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)
— Cache use needed to feed vector units
= Socket
— Using all cores in a processor requires parallelization (MPI, OMP, ...))
— Using coherent, shared socket caches
= Node
— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk 10 and network traffic)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Compiler Reports

FREE* performance metrics

Compile with -qopt-report=5

= Which loops were vectorized = Prefetching
= \ector Length = |ssues preventing vectorization
= Estimated Gain = Inline reports
= Alignment = Interprocedural optimizations

= Scatter/Gather = Register Spills/Fills

LOOP BEGIN at ../src/timestep.F(4835,13)

remark #15389:
remark #15381:
remark #15335:
remark #15329:
remark #15305:
remark #15399:
remark #15309:
remark #15450:
remark #15463:
remark #15475:
remark #15476:
remark #15477:
remark #15478:
remark #15488:
remark #25439:

LOOP END

vectorization support: reference nbd_(1) has unaligned access [../src/timestep.F(4836,16)]

vectorization support: unaligned access used inside loop body

loop was not vectorized: vectorization possible but seems inefficient. Use vector always directive or -vec-threshold® to override
vectorization support: 1irregularly indexed store was emulated for the variable <coefd_(nbd_(1))=, part of index is read from memory
vectorization support: vector length 2

vectorization support: unroll factor set to 4

vectorization support: normalized vectorization overhead 0.139

unmasked unaligned unit stride loads: 1

unmasked indexed (or scatter) stores: 1

--- begin vector cost summary ---

scalar cost: 4

vector cost: 4.500

estimated potential speedup: 0.880

--- end vector cost summary ---

unrolled with remainder by 2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Application

Performance Snapshot

Bird’s eye view

VTune™ Amplifier’s Application Performance Snapshot

High-level overview of application performance

= |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

= |nformative, actionable data in clean HTML report
= Detailed reports available via command line

= Low overhead, high scalability

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Usage on Theta

Launch all profiling jobs from /projects rather than /home
Load the APS module:
$ module swap intel/18.0.0.128 intel/19.0.3.199
Launch your job in interactive or batch mode:
$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe
Produce text and html reports:

$ aps -report=./aps result .. ./

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2017-08-01 12:08:48

Number of ks 142 Your application is MPI bound.

anks per node:

Opem?p threads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), non-
HW Platform: intel(R) Xeon(R) Processor code named Broadwell-EP optimal communication schema or MPI library settings. Use MPI profiling tools

Logical Core Count per node: 72

like Intel® Trace Analyzer and Collector to explore performance bottlenecks.

121.39s i e

MPI Time 53.74%K <10%
043% <10%

14.70% <20%
0.30%K >50%
0.00% <10%

50.98 0.68

SP FLOPS CPI

MPI Time OpenMP Imbalance Memory. Stalls FPU_Utilization
53.74%K of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots 0.30%K~
(65.23s) (0.52s)
Cache Stalls SP.ELOPs per. Cycle

MPI Imbalance 12.84% of cycles 0.08 Out of 32.00

11.03% of El. d Ti i

(13 339:)0 apsed lime Msm.cz.r.y..EQQ.tp.UnI. DRAM Stalls Vector Capacity Usage

: . Resident: 0.18% of cycles 25.84%K
TOP 5 MPI Functions % Per node:
Waitall 37.35 Peak: 786.96 MB N.U.M(.)A.) FP Instruction Mix
Bend 6.48 Average: 687.49 MB 31.79% of remote accesses % OZPacked FPA ns ’_.103.54%
Per rank: % of 128-bit: 3.54%
Barrier 5.52 Peak: 127.62 MB % of 2 t: 0.00%
Irecv 3.70 Average: 38.19 MB % of S T.: 96.46%N
Scatterv 0.00 Virtual: EP Arith/Mem.Rd Instr. Ratio
Per node: 007K
Peak: 9173.34 MB :
I/0 Bound Average: 9064.92 MB P Arith/Mem. Wr Instr. Ratio
-000° """"""""" Per rank: 0.30K
00% Peak: 566.52 MB

(AVG 0.00, PEAK 0.00) - c03 61 MR

2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tuning Workflow

Intel® VTune™ Amplifier's
Application Performance Snapshot

MPI Bound N FPU
MPI Imbalance CPU Bound Thread-leve

Memory Bound serial time underutlumaztlon

+ Thread-level scalability issues parallelization R

and Collector

Intel® MPI Tuner Intel® VTune™ Amplifier

CLUSTER NODE CORE

(OpenMP analysis) issues)
Intel® Trace Analyzer I * +

Intel® Advisor

l'hreading Vectorization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® Advisor

Vectorization and Static Analysis

https://www.alcf.anl.gov/user-guides/advisor-xc40

Intel® Advisor

Modern HPC processors explore different level of parallelism:
= within a core: vectorization (Theta: 8 DP elements, 16 SP elements)
= between the cores: multi-threading (Theta: 64 cores, 256 threads)

Adapting applications to take advantage of such high parallelism is quite demanding and
requires code modernization

The Intel® Advisor is a software tool for vectorization and thread prototyping

The tool guides the software developer to resolve issues during the vectorization
process

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data (roofline)

= |nvestigate application place within roofline model

= Determine vectorization efficiency and opportunities for improvement
2. Collect memory access pattern data

= Determine data structure optimization needs
3. Collect dependencies

= Differentiate between real and assumed issues blocking vectorization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline

Next Ste pS If Under the Vector Add Peak If just above the
Scalar Add Peak

Check “Traits” in the Survey to see if FMAs are used. .
. iteri q ler fl A Check vectorization
not, try altering your code or compiler flags to Ferne i he SumEs

induce FMA usage. -
If under or near a memory [FEFS & Follow the recommendations
roof... A to improve it if it’s low.
FMA Peak
* Try a MAP analysis.
V‘tor Add Peak
‘ If under the
Scalar Add Peak...

Make any appropriate 1 f
cache optimizations. [I
* If cache optimization is T
: : Check the Survey Report to
I | see if the loop vectorized. If
I ‘ not, try to get it to vectorize

reworking the
algorithm to have a

running Dependencies to see
if it’s safe to force it.

higher Al.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® Advisor on Theta

Two options to setup collections: GUI (advixe-gui) or command line (advixe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI provides the
same capabilities in a user-friendly interface.

| recommend taking a snapshot of the results and analyzing in a local machine (Linux, Windows, Mac) to
avoid issues with lag.

advixe-cl --snapshot --cache-sources --cache-binaries ./advixe_res_dir
Some things to note:
= Use /projects rather than /home for profiling jobs
= Compile with =g and —dynamic
= Set your environment:

$ module swap intel/18.0.0.128 intel/19.0.3.199

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Use -h Option!

advixe-cl -h collect

Examples:

1) Survey the application to determine hotspots. ‘
advixe-cl --collect survey --project-dir ./advi --search-dir src:r=./src
-- ./bin/myApplication

2) Collect memory access patterns data with specified loops for analysis.
advixe-cl --collect map --mark-up-list=5,10,12 --project-dir ./advi
--search-dir src:r=./src -- ./bin/myApplication

3) Collect survey data on 4 nodes of MPI cluster into the shared ./advi project directory.
mpirun -n 4 advixe-cl --project-dir ./advi --collect survey
-- <PATH>/mpi-sample/1_mpi_sample_serial

4) Collect dependencies data for all loops that are both innermost and hold above 2% of the total CPU time.
advixe-cl --collect dependencies --project-dir ./advi --loops="loop-height=0,total-time>2"
-- ./bin/myApplication

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® Advisor on Theta

B C:\Users\pauliusv\test - Intel Advisor
File View Help

‘s B B B | B @ | p SttSuneyhnalysis v | B | @

23] Survey & Roofline

& No Data

To collect data about your application's perfformance, compile your application with Release
build settings and run Survey analysis.

Copy Command Line to Clipboard
Command line:

& Consider selecting loops for deeper analysis using checkboxes in Survey Report

mpiexec -n 1 -gtool "advixe-cl -collect tripcounts -module-filter-mode=exclude -trip-counts -no-flop -no-
stacks -no-callstack-tripcounts -no-flops-and-masks -no-callstack-flops -stack-stitching -no-profile-python
-auto-finalize -project-dir C:\Users\pauliusv\test:0" "C:\Users\pauliusv\AppData\Local\Apps\Pexip Connect
\pexip-connect.exe’|

Copy ‘ l Close

[[J Hide knobs with default values

[Generate command line for MPI

Copyright 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

advixe.qgsub Script

* Copy and customize the script from /soft/perftools/intel/advisor/advixe.qsub
e All-in-one script for profiling
X o Go |e advisor alcf $ Q
* Jobsize - ranks, threads, hyperthreads, affinity 9
All News Images Maps Shopping More Settings Tools
* Attach to a single, multiple or all ranks 10100 et (065 o
. . Advisor on XC40 | Argonne Leadership Computing Facility
° B|nary as arg#l, |npUt as arg#z https://www.alcf.anl.gov/user-guides/advisor-xc40 v
Science at ALCF ... Advisor is an advanced profiling tool which helps you to optimize your code on KNL
° qSUb adlee.qSUb ./your_exe ./inputs/lnp zrsci:gzi:tr:.a.’.).rls](:‘u;cir\;c:)p[tr/al:tkeslia_c,i\‘vffor/adwxe-vars.sh export PMI_NO_FORK=1 # - Run advisor
* Binary and source search directory locations
* Timestamp + binary name + input name as result directory
[]

Save cobalt job files to result directory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor Collections

Every advisor study depends on results collected from “survey”

If you try to run tripcounts/map/dependencies without having completed survey the
collection will fail

e Either
e Collect survey and any additional analyses in one gsub submission

* Collect survey, replace S{RESDIR} with generated directory name, gsub additional
analyses

* Write your own script

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Nbody demonstration

The naive code that could

https://github.com/pvelesko/nbody-demo

Nbody gravity simulation

git clone https://github.com/pvelesko/nbody-demo.git ./ ; cd ./nbody-demo/ver2; make

struct Particle for (1 = 0; 1 < n; i++){ // update acceleration
{ for (3 = 0; j < n; j++){
public: real type distance, dx, dy, dz;
Particle() { init();} real type distanceSqr = 0.0;
void init () real type distanceInv = 0.0;
{
pos[0] = 0.; pos[l] = 0.; pos[2] = O.; dx = particles[j].pos[0] - particles[i].pos[O0];
vel[0] = 0.; vel[l] = 0.; vel[2] = O.;
acc[0] = 0.; acc[l] = 0.; acc[2] = O0.;
mass = 0.; distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
} distanceInv = 1.0 / sqgrt(distanceSqr);
real_ type pos[3];
real type vel[3]; particles[i].acc[0] += dx * G * particles[j].mass *
real type acc[3]; distanceInv * distanceInv * distancelnv;
real_ type mass; particles[i].acc[l] += ..
}; particles[i].acc[2] += ..

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Collect Roofline Data

Starting with version 2 of the code we collect both survey and tripcounts data:

cp /soft/perftools/intel/advisor/advixe.qgsub ./
<modify advixe.gsub as needed>

gsub ./advixe.gsub ./nbody.x

And generate a portable snapshot to analyze anywhere:

advixe-cl --snapshot --project-dir ./adv res --pack --cache-sources \

—--cache-binaries --search-dir src:=./ --search-dir bin:=./ -- nbody naive

If finalization is too slow on compute add -no-auto-finalize to collection line.

You will have to finalize manually:

advixe-cl -report survey --refinalize-survey --project dir ./result dir

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

E] Elapsed time: 10.24s El“mlzlm AllModules ~ || All Sources ¥ H
— 'ﬁm' GUI left panel provides access to further
@ Vectorization Advisor = testS

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector paral
discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottle:
Advisor Roofline model automation.

R Summary provides overall performance
Eapsed Time | characteristics

Vector Instruction Set AVX512, AVX2, AVX Number of CPU Threads 1
Total GFLOP Count 2120 Total GFLOPS 207 |
Total Arithmetic Intensity © 035165 n LiStS instruction Set(S) Used
~' Loop metrics
Metrics Total
TowlCPU e 014 R 100.0% = Top time consuming loops are listed
Time in 1 vectorized loop 1008 ([N o0 <> . L.
Time in scalar code 006s | |nd|v|dua”y
Total GFLOP Count 2120 (D 100.0%
e v * Loops are annotated as vectorized and non-
~ Vectorization Gain/Efficiency .
Vectorized Loops Galn/Eﬂlclfzncy 10.05x _:] Vecto rlzed
Program Approximate Gain 10.00x
+ Top timesconsuming loops i e e * Vectorization efficiency is based on used ISA,
? loopn SSimuation-ta o GSimulatoncos 8 100805 oo 125 in this case Intel® Advanced Vector Extensions
2 foop I Skmmtisint Skmintion sl - o wo 512 (AVX512)

*Other names and brands may be claimed as the property of others.

Survey Report (Source

o S e MM |nline information regarding

Vectorized Loops 1| FLOPS
+][=) Function Call Sites and Loops ¥ Performance Issues Self Time v | Total Time | Type Why No Vectorization? - . .
Vector... Efficiency | GainE... VL (Ve.. | Self GFLOPS O O C a ra Cte rI St I CS
[loop in at cpp:138] 52 oa .. 10.080s @8 10.080s @M Vectorized (Body) AVXS... 10.05x 16 2.093
5 [loop in GSimulation:start at GSimulation.cpp:136] @ 1 Opportunity for outer |... 0.060s! 10.140s S Scalar @ inner loop was already v.. 1.700 D
“1 start 0.000s! 10.140s N Function
§ main 0.000s 10.140s NN Function
§ GSimulation:start 0000s! 101405 S Function | | SA u Se d
4O [loop in GSimulation:start at GSimulation.cpp:133] ¥ 1 Data type conversions .. 0.000s| 10.140s SN Scalar @ inner loop was already v..
< > < >
= T d
Source [Topmwnlmdemmulmnblyld i @ Why No izatic y es rocesse
Line Source Total Time | % | Loop/Function Time | % | Traits |
132 EONSt GoUBLE tU = TimMe.STATrt();
. .
133 @ for (int s=1; s<=get_nsteps(); ++s) | | C I t f t
oo omplier transtormations
135 ts0 += time.start(); .
136 for (i = 0; i < n; i++)// update acceleration ppl d
137 { a Ie
138 © for (3 = 0; j < n; j++) 0.100s 10.080s =
= Vector length used
. , ector len use
140 real_type dx, dy, dz;
141 real_type distancesgr = 0.0f
142 real_type distancelav = 0.0f;
143 u cee
Selected (Total Time): 0.100s v

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey Report (Code Analytics

[) Summary % Survey & Roofline ™ Refinement Reports

Detailed loop information

| vectorized Loops B FLOP;
+][=] Function Call Sites and Loops TSI Self Time v | Total Time | Type Why No Vectorization?
Issues Vector... | Efficiency | Gain E... | VL (Ve... | Self €
[loop in tat cpp:138] §2 gat... 10.080s @0 10.080s @ Vectorized (Body) AvXs... [63% |10.05x 16 2.09:
416 [loop in GSimulation:start at GSimulation.cpp:136] & 1 Opportunity for.. 0060s| 10.140s @EE Scalar & inner loop was already V... 1700
. .
n I t t m 98 start 0000s| 10,1405 @I Function
n S ru C IO n IX -5 f main 0.000s! 10.140s @B Function
s § GSimulation:start 0.000s! 10.140s @D Function
4O [loop in GSi tat cpp:133] @ 1 Data type conv.. 0.000s| 10.140s G Scalar @ inner loop was already V..
. .
= |SA used lud b
used, including subgroups (1.)
Source | Top Down | Code Analytics ‘ ly | v i @ Why No
~
.
] L O O p t ra ItS Loop in GSimulation:-start at GSimulation.cpp: 138 Average Trip Counts: 125 ® GFLOPS: 2.09325 ®
10.080s AVX-512 Mask Usage: 37
Vectorized (Body) ~ Total time
e
n FMA AVX512ER_512: 10.080s Traits ® static Instruction Mix C]
AVX512F 512 Selftime Square Roots

Memory-22 Compute:21 Mixed -2 Other

Instruction Set Gathers 12 Number of Vector Registers: 26
-

« Irregular Memory Access Patterns May Decrease Perfor

¥ Static Instruction N
Static Instruction Mix Summary Suggestion: See Recommendations Tab

= Square root > Wamory 39%

22)
» Compute 37% (21) GHEID

> Mixed 4% (2)0 Blendsv
Other 21% (12) @B « Irregular Memory Access Patterns May Decrease Perfor
» Dynamic Instruction Mix Summary Suggestion: See Recommendations Tab
= Gathers/ Blends point to
. d @ 2-Source Permutes
memory Issues and vector ~ 10.05x Mask Manipuiatons

63% Vectorization Efficiency Vectorization Gain

inefficiencies ’

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

CARM Analysis

Performance (GFLOPS) & a B - | [Z Use Single-Threaded Roofs @ | [] Show Roofline with Calistacks @ =
100
10
e N e . ScalarAd 1 Peak 223G FLops’
. -
1 1 G®
22
01 e -

T
0.01 01 1
Self Elapsed Time: 10.080s Total Time: 10.080 s Arithmetic Intensity (FLOP/Byte)

Using single threaded roof

Code vectorized, but
performance on par with scalar
add peak?

= |rregular memory access
patterns force gather
operations.

= Qverhead of setting up
vector operations reduces
efficiency.

Next step is clear: perform a Memory Access Pattern analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Pattern Analysis (Refinement)

Modify advixe.gsub to collect “survey” followed by “map”

aprun -n <..> ./profilel.sh “advixe-cl -c map <..>

D Summary % Survey & Roofline %) Refinement Reports B> MAP Source: GSimulation.cpp J @ Storage of particles is in an Array Of
Site Location Loop-Carried Dependencies Strides Distribution Access Pattern Max. Site Footprint ‘Site Name Recommendations St ructu res (AOS) styl e
[[loop in start at GSi ion.cpp:1... No inf i ilabl 33%/33% /- Mixed strides 5KB loop_site_1 @ 2 Inefficient gather/scatter instructions present
v . .
Memory Access Patterns Report | D ies Report | i At "/ This leads to regUIar, but non-unit
1 d i T Functi iable ref Max. Site Footpri Modul i Access T i H
D Stride ype Source Nested Function Variable references lax. Site Footprint odules Site Name ccess Type strldes In memory access
=P L 0; 40 0 a de atio pp:144 blo 0x60a0b0 allocated a atio pp:109 [4KB bod oop e Read
142 real type distanceInv = 0.0f;
143 .
144 axI=Iarticles 31 pesrolI=Ipasticlas (A1t pos 0T/ IEien L 33% unit
145 dy = particles[j].pos[1] - particles[i].pos[1]; //1flop
146 dz = particles[j].pos[2] - particles[i].pos[2]; //1£lop
=ZP2 @ Gather stride GSimulation.cpp:144 block 0x60a0b0 allocated at GSimulation.cpp:109 5KB nbody.x loop_site_1 Read o, . .
o v S pr———y = 33% uniform, non-unit
143
144 dx = particles[j].pos[0] - particles[i].pos[0]; //1flop
145 dy = particles[j].pos[1] - particles[i].pos[1]; //1flop) .
146 dz = particles[j].pos[2] - particles[i].pos[2]; //1£lop u 33/) non—un'form
=pP3 @ Parallel site information GSimulation.cpp:144 nbody.x loop_site_1
142 real_type distanceInv = 0.0f;
143 . .
144 ax = particles(j].pos(0] - particles(il.posi0l; //1flop Re-structuring the code into a
145 dy = particles[j].pos[1] - particles[i].pos[1]; //1£lop
146 dz = particles(i].pos[2] - particles(i].pos(2]; _ //iflop Structure Of Arrays (SOA) may lead to
=P5 B 0 Uniform stride GSimulation.cpp:149 48 nbody.x loop_site_1 Read . . .
unit stride access and more effective
148 distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared; //6£lops . .
149 distanceInv = 1.0f / sqrtf (distancesqr); //1div+lsqre vectorization
150
151 particles[i].acc[0] += dx * G * particles[j].mass * distanceInv * distanceInv * distancelnv; //6£lops

Copyrigh 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically vectorized where

memory locations are not contiguous

{
public:

}i

struct Particle

real_ type pos[3];
real_ type vel[3];
real_ type acc[3];
real_ type mass;

{

public:
real type
real type
real type
real type

}i

struct ParticleSoA

*poOS_X, *pos_y, *pos_z;
*vel x,*vel_y,*vel_z;
*acc_x,*acc_y;*acc_z
*mass;

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AoS - array
of structures
Memory
I ~
H
'es
'.l.
Q
'_l
(]
[1)]
2
.
- ~
"]
3]
(o
'.I.
o
'_l
(]
n
'E
.I_._l \

/

~—

Vector
Register

SOA - structure
of arrays

emory

p.pos_x[i]

v

p.pos_x[i+1]

P.pos_x[i+2]

P.pos_x[i+3]

p.pos_x[i+4]

p.pos_x[i+5]

P.pos_x[i+6]

P.pos_x[i+7]

P.pos_x[i+8]

2

—

Vector
Register

Performance After Data Structure Change

. > o lm
In this new version (version 3 in GitHub |[Bisimmay] & suvey &roofine £ Refivment Repors N
58 #1121 Function Call Sites and L e < Total Ti T Why NoVectorization? | conized Loops Bl|FLOPsS -
sa m p | e) We I nt rod u Ce t h e fol IOWI ng g unction Ca ites an 00ps Issues € imew otal lime ype ly NO Vectorization? ‘Vector___ GainE...| VL (Ve...| Self GFLOPS <
8« O [loop in GSil ion::start at GSi ion.cpp:151] ¢ 1 dep... 46.360s @ 46.360s @D Scalar © vector dependence pre... 11220 ¢
cha nge: | |Se1ocp crtmstornmcions appiiea 0| |Ho toop seanstormations apphisd o Do Toeterimtien
=L [loop in GSimulation:start at GSimulation.cpp:171] @ 1 Assumed depe.. 0.040s| 0.040s| Scalar & vector dependence preve... 047500 C
s f _start 0.000s! 46.400s @B Function
™ h g p 1 I d f % § main 0.000s| 464005 @EEED Function
C a n e a rt I C e ata St ru Ctu reS ro m + § GSimulation:start 0.000s! 46.400< MR Function cv
< >« >

Assembly I ¥ Rec ions | @ Why No Vectorization?

AOS to SOA =

. Loop in GSimulation::start at GSimulation.cpp:151 Average Trip Counts: 2000 @ GFLOPS: 1.12166 @
Note changes in report: O 46.360s AVX-512 Mask Usage: 100

Scalar Total time

[] i ; ion Mix. Code Optimizations
Pe rfo r m a n Ce Is IOWG r 46.360s Static Instruction Mix 5 @ Compiler: Iﬁtel(R) C++ Intel(R) 64 Compiler for applications @

Self time running on Intel(R) 64,

Memory:8 Compute:11 Mixed 11 Other.
Version: 18.0.0.128 Build 20170811

. . . v 4 Number of Vector Registers: 21
= Main loop is no longer vectorized St sncion i oy
» Compute 32% (11) GIED
> Mixed ' 32% (11) GHED

= Assumed vector dependence ook
prevents automatic vectorization

Traits ®
Sauare Roots. FMA _

Next step is clear: perform a Dependencies analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Dependencies Analysis (Refinement

Modify advixe.gsub to collect “survey” followed by “dependencies”
aprun -n <..> ./profilel.sh “advixe-cl -c dependencies <..>

gsub advixe.gsub ./ver3/nbody.x

B Summary % Survey & Roofline ®j Refi Reports | D ies Source: GSil i M

Dependencies analysis has

Site Location Loop-Carried D ie: Strides Distributi Access Pattern Max. Site Footprint Site Name | Recommendations
[[loop in start at GSimulation.cpp:157] @ RAW:4 No i ion available No il ion available No il ion available loop_site_1 @ 1 Proven (real) dependency present .
high overhead:
.
Memory Access Patterns Report | D ies Report | ¢ i \
= Run on reduced workload
ID @ |Type Site Name | Sources Modules | State Severity
P1 @ Parallel site information loop_site_1 GSimulation.cop nbody.x v Not a problem Error 4 items
P3 @ Read after write cy loop_site_1 ion.cop nbodyx R New Information 1 item

Read after write dependency | loop_site_1 | GSimulation.cpp; mam.cpp\nbody.x

. . .
PS @ Read aterwrite y loopsite1 GSi pr nbodyx A New Type Ad VisOor F N d INgs:
Parallel site information 1 item .

P6 @ Read after write cy loop_site_1 ion.cpp nbodyx R New

Read after write depend... 4 items

Source

ID |Instruction Address | Description | Source Function | Variable references | Module | State GSimulation.cpp 5 items] RAW
EIX3 0x401c85 Parallel site [GSimulation.cpp:157 start nbodyx R New main.cpp 1item e p e n e n cy

155 real_type distanceInv = 0.0f; Module

] nbodyx 5 items

|157 dx = particles->pos_x[j] - particles->pos_x[i]; //1£lop

158 dy = particles->pos_y[j] - particles->pos_y[il; //1£10p State

159 dz = particles->pos z[j] - particles->pos z[i]; //1£flop . . e

" . 4 item: -

X6 0x401cb8, 0x401d17 _ Read [GSimulation.cpp:164 start register XMM1 nbodyx R New New tems u tl p e re u Ct I O n type

162 distanceInv = 1.0f / sqrtf(distancesqr); //1div+lsqgre Not a problem 1 item

163

.

|164 particles->acc_x[i] += dx * G * particles->mass[j] * distanceInv * distanceInv * distancelnv; //6flops

e et 1 R e R A ependencies

166 pa cles->acc z[i] += dz * G * particles—>mass([j] * distanceInv * distancelnv * distancelnv; //6flops
=IX7 0x401dle Write [F GSimulation.cpp:164 start nbodyx R New

162 distanceInv = 1.0f / sqrtf (distancesgr); //1div+lsqre

163 ||| @ SortByltem Name *¥

164 particles->acc x[il += dx * G * particles->mass[i] * distanceIny * distancelny * distanceIny: //6floos

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Recommendations

Memory Access Patterns Report

Dependencies Report ‘ ¥ Recommendations

All Advisor-detectable issues: C++ | Fortran ISSUE: PROVEN (REAL) DEPENDENCY

. PRESENT
Recommendation: Resolve dependency The compiler assumed there is an

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following: anti-dependency (Write after read - WAR) or
true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the
assumption and handling accordingly.

« If there is an anti-dependency, enable vectorization using the directive #pragma omp simd

safelen(length) , where length is smaller than the distance between dependent iterations in
anti-dependency. For example:

Resolve dependency
fpragma omp simd safelen(4)
for (1 = 0; 1 < n - 4; 1 += 4)

{

a[i + 4] = a[i] * c;

« If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:list) . For example:
{pragma omp simd reduction (+:sumx)
for (k = 0;k < size2; k++)
{

sumx += x[k]*b[k];

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Performance After Resolved Dependencies

Bl Summary % Survey & Roofline | ®i Refinement Reports

Performance (GFLOPS) k Q) [B - | [4 Use Single-Threaded Roofs @ | [[] Show Roofline with Callstacks © =
100 <
10
1 ; . .
" ~'~‘ ”

T
0.01 01 1 10
Self Elapsed Time: 2.320s Total Time: 2.320 s Arithmetic Intensity (FLOP/Byte)

New memory access pattern plus vectorization produces much improved performance!
What'’s next?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1++)

visor Roofline — How much further can we go?

(1 =0;
Performance Metrics Summary ~

-]

__assume_aligned(particles->pos_x, alignment); kQ |Cores: | 1 v
__assume_aligned(particles alignment);
__assume_aligned(particles _z, alignment); 100
__assume_aligned(particles _x, alignment);
__assume_aligned(particles alignment);
__assume_aligned(particles _z, alignment);
__assume_aligned(particles->mass, alignment);

SdO149

75,79 GFLOPS (4.3%) @ - - S SP Vector FMA Peak: 75.79 GF

real_type ax_1 = particles->acc_x[1];
real_type ay_1 = particles 3 B
real_type az_i = particles-»acc_z[1];

?

-2 _DP Vector Add Peak: 18.91 GFLOPS_
=

[loop in GSiuIation::start at GSimulation.cpp: 156]

- - - 104 Performance: 17.67 GFLOPS

(] v] <= N3] ++) L1 Arithmetic Intensity: 0.69 FLOP/Byte
{ . :2.580 s

real_type dx, dy , Self Elapsed Time: 2,580 s
real_type distanceSqr g‘;ﬁfgg}f:zésfzoﬁ
real_type distanceInv =

particles

particles->pos_y[j] - particles->pos_yl[i]; % s

particles->pos_z[j] - particles->pos_z[1i]; 1 , G

distanceSqr ay™sy + dz*dz + softeningSquared; 18
distanceInv JistanceSqr); Cu,r,rent % Of Peak — — 40%
* particles->mass[j] * distanceInv * distanceInv * distanceInv; N ’ 4-4
1 ass[j] * distanceInv * distanceInv * distancelInv;
G * particles->mass[j] * distanceInv * distanceInv * distanceInv;

Why only 40%?
* Vectorization Efficiency
* Long Latency/Complex Operations

ax_1; 0.1

particles->acc_x[1] =
acc_yl1] = ay_1;

particles-»acc_z[1] = az_1;

° FLOP/Byte (Arithme

3 0.01 0.1 1 10
FMA Ratio == E — 10% Physical C’oreS‘ 64 @ App Threads: 1 @ ‘

Peak = SP Vector ADD * (1+ FMA Ratio)
Peak =40 * (1 + 0.1) = 44 GFLOPS

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization Efficiency?

(@ | Elapsedtime: 5.195 [[RV T] IR ot | | FITER: [All Modules -

Summary @ Survey & Roofline |® Refinement Reports

[=] Function Call Sites and Loops

EI® [loop in GSimulation::start at GSin
4«0 [loop in GSimulation::start at GSimulati

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Complex Operations?

Performance Metrics Summary ~ ormance Metrics Summary ~

K Q |Cores:| 1 v o L Cores:| 1 v | @

100

SdO149

Sd0O1d!

80.05 GFLOPS (2.6x)

38,57 GFLOPS (1.2 *

[loop in GSimulation:

Current %

0.1

0.1
N
O
o
K ° v

)01+ FLOP/Byte (Arithmetic Inte
0.01 0.1 1 10 0.01 0.1 1
Physical Cores: 64 @ App Threads: 1 @ Phvsical Cores: 64 @ App Threads: 1 @

10

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Poor Cache Utilization?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VTUNE™ Amplifier

Core-level hardware metrics

https://www.alcf.anl.gov/user-guides/vtune-xc40

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= Low overhead

= Comprehensive (microarchitecture, memory, 10, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

Analyzing code access to shared resources is critical to achieve good performance on
multicore and manycore systems

VTune Amplifier takes over where Intel® Advisor left

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

= uarch-exploration General microarchitecture exploration
= hpc-performance HPC Performance Characterization

" memory-access Memory Access

= disk-io Disk Input and Output
= concurrency Concurrency

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

= hotspots Basic Hotspots

= |ocksandwaits Locks and Waits

= memory-consumption Memory Consumption
= system-overview System Overview

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Python Support

The HPC Performance Characterization Analysis

Intel VTune Amplifier@jlselogin1 - a X
5% r L& O Welcome r000hpc % | ro0lue =
T h rea d i N g : C P U U tl I iZ at | on HPC Performance Characterization HPC Performance Characterization ~ @ INTELVTUNE AMPLIFIER 2019
Analysis Configuration Collection Log Summary Bottom-up y g
= Serial vs. Parallel time Elapsed Time ”: 214.322s

= Top OpenMP regions by potential gain

Effective CPU Utilization : 1.5% Kk

" Tip: Use hotspot OpenMP region analysis for i A
more detail Parallel Region Time : 213.277s (99.5%)
Estimated Ideal Time : 13.667s (6.4%)

OpenMP Potential Gain : 199.610s (93.1%) *
Top OpenMP Regions by Potential Gain

Effective CPU Utilization Histogram

Memory Access Efficiency
) Back-End Bound “: 29.8% of Pipeline Slots

= Stalls by memory hierarchy L2 Hit Bound 22.0% of Clockticks
. oy . L2 Miss Bound : 0.2% of Clockticks
L] Ba ndWldth ut| I|Zat|0n Demand Misses 11.8% of L2 Input Requests
HW Prefetchgr : 88.2% of L2 Input Requests
= Tip: Use Memory Access analysis e B B, oo

Bandwidth Utilization Histogram

. . i . SIMD Instructions per Cycle : 0.293
Vectorization: FPU Utilization

= FLOPS " estimates from sampling

Collection and Platform Info

= Tip: Use Intel Advisor for precise metrics and

vectorization optimization " For 3rd, 5th, 6th Generation Intel® Core™ processors and second generation Intel® Xeon
Phi™ processor code named Knights Landing.

Optimization Notice /_D
Copyright © 2018, Intel Corporation. All rights reserved. ‘ lnte 39

*Other names and brands may be claimed as the property of others.

uArch Exploration

Core Issues
= Branch Misprediction
= CPI Rate

Back-End Bound Issues
= |nstruction Cache

= Data Cache

= Split Loads

= TLB Overheads

Vectorization: FPU Utilization

= SIMD Arithmetic Intensity

= Tip: Use Intel Advisor for precise metrics and
vectorization optimization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel VTune Amplifier@jlselogin1 - [m] X
E&Fr s 0= Welcome r000hpc ro0lue » =
ﬂ Microarchitecture Exploration Microarchitecture Exploration ~ @ |NT[[VTUNEAMP|.|H[R 20]9

Analysis Configuration Collection Log Summary Bottom-up Event Count Platform

Elapsed Time : 243.742s

Clockticks: 1,207,557,000,000

Instructions Retired: 829,348,000,000

CPI Rate ": 1.456

MUX Reliability “: 0.986

Front-End Bound *: 34.0% Kk of Pipeline Slots
ITLB Overhead ~: 0.2% of Clockticks
BACLEARS *: 5.0% R of Clockticks
MS Entry “: 2.2% of Clockticks

ICache Line Fetch ~: 28.9% Rk of Clockticks

Bad Speculation “: 1.3% of Pipeline Slots
Back-End Bound “: 29.3% of Pipeline Slots
Retiring ~: 35.5% of Pipeline Slots

Average CPU Frequency ~: 1.4 GHz
Total Thread Count: 67

Paused Time : 29.719s

Effective CPU Utilization : 1.5% Kk

Collection and Platform Info

" For 3rd, 5th, 6th Generation Intel® Core™ processors and second generation Intel® Xeon
Phi™ processor code named Knights Landing.

Memory Access Analysis

| Memory Access Q INTEL VTUNE AMPLIFIER XE 2017

s}s & 655 s DRAM Bandwidth, GB/sec
T ivid baiadit i i3 0ds ~ (Vb Total, GB/sec

Tune data structures for performance ‘ & v L RS

= Attribute cache misses to data structures e
(not just the code causing the miss) 3 e
= Support for custom memory allocators s ER |
Grouplr\g' Banwdm Domain / Bandwidth Utillzallfm Type /Memory OPJe.;;/AHucanon Stack v ‘z‘ ‘E‘ E
T — WEZET_&‘ o
Optimize NUMA latency & scalability Ty A
. . . . » Medium 241633 @ 0
= True & false sharing optimization > MCORAM it Gsee sosm. mm— o010
= Auto detect max system bandwidth 0 wo v | ORI - EOT ORI | BN R
= Easier tuning of inter-socket bandwidth
Bandwidth Domain / Bandwidth Utiliz... CPUTime ¥ I L2 Miss Count
v DRAM. GB/sec | 840.803s [] 6.000.180
Easier install, Latest processors v High | 508635 D 4.000.120
.]] . * » stream.c:100 (381 MB) ‘ 2,000.060
= No special drivers required on Linux b stream.c:98 (381 MB) 2,000,060
= |ntel® Xeon Phi™ processor MCDRAM (high bandwidth | » Medium 241.638s 0 0
» MCDRAM Flat, GB/sec 840.803s (D 6.000.180

T
lntel 41

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® VTune™ Amplifier on Theta

Two options to setup collections: GUI (amplxe-gui) or command line (amplxe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI provides the same
capabilities in a user-friendly interface.

Some things of note:

= Use /projects rather than /home for profiling jobs
= Compile with =g and —dynamic

= Set your environment:

$ module swap intel/18.0.0.128 intel/19.0.3.199

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

viune An

Other names and brands

e e TIuy e

M P b B DS O welcome |

Algorithm Analysis
Basic Hotspots
Advanced Hotspots
Concurrency

Locks and Waits

Memory Consumption

A Analysis Type

HPC Performance Characterization

Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP efficiency analysis,
memory usage, and FPU utilization with vectorization information.

For vectorization optimization data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor. It identifies the loops
that will benefit the most from refined vectorization and gives tips for improvements.

The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more (F1)

Microarchitecture Analysis

General Exploration
Memory Access
TSX Exploration
TSX Hotspots

SGX Hotspots

Platform Analysis
CPU/GPU Concurrency
System Overview

GPU Hotspots

GPU In-kernel Profiling
Disk Input and Output

Custom Analysis

1ay be claimed as

A Vectorization analysis is limited for this platform. Only metrics based on binary static analysis such as vector instruction set will be available.

CPU sampling Iinterval, ms

K

|
& Copy C

Command line:

[soft/compilers/intelvtune_amplifier_2018.1.0.535340/bin64/amplxe-cl -collect hpc-
lperformance -app-working-dir jusr/bin -- Is

Copy | Close I

[Use -collect-with action

Hide knobs with default values

-

the property of others

Ha Command Line... ‘

D | o
N

amplxe.qsub Script

* Copy and customize the script from /soft/perftools/intel/vtune/amplxe.qsub
e All-in-one script for profiling
* Job size - ranks, threads, hyperthreads, affinity Google viune ale ¢ Q

All Shopping News Images Videos More Settings Tools

* Attach to a single, multiple or all ranks

About 575 results (0.33 seconds)

° Bina ry as a rg#l’ in put as a rg#z VTune on XC40 | Argonne Leadership Computing Facility
https://www.alcf.anl.gov/user-guides/vtune-xc40 v
. . VTune is an advanced profiling tool which helps you to optimize your code on the KNL architecture. It
o qSUb amplxe.qSUb ./yOUF_exe ./InpUtS/Inp allows you to track how well your code is threaded and ...

You've visited this page 5 times. Last visit: 4/29/19

* Binary and source search directory locations

* Timestamp + binary name + input name as result directory

Save cobalt job files to result directory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Hotspots analysis for nbody demo (ver7: threaded)

[m| > D ®F| O weicome vuneres X = OpenMP Region Duration Histogram
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER 2018 This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance

SN]Collection oo ©Analysie Target A ARaEiS TYpel © Summary JEOIB -up & Caller/Callee @ Te Tree = Platform bottleneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration

<

>

OpenMP Region: | startSompSparallel:64@unknown:146:182

Elapsed Time : 1.037s
500

CPU Time “: 21.420s €
Effective Time “: 2.280s 5
Spin Time “: 18.660s I 4004 8
erial Spinning - 17.319s R s
ent 0s 2004 =
Othel 1.342s
Overhead Time *: 0.480s 200
al Ti C 64
0s 100
OpenMP Analysis. Collection Time : 1.037 0 0002 v
Serial Time (outside parallel regions) : 0.733s (70.7%) &
Top Serial Hotspots (outside parallel regions) -Wm
Parallel Region Time : 0.304s (29.3%) Duration Type (sec)
Top Hotspots
CPU Usage Histogram Lots of spin time indicate issues with load balance and synchronization
I:llusemstogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage
ey 5! Given the short OpenMP region duration it is likely we do not have
ms-{ 3 3! . .
" H sufficient work per thread
600ms &)
|
I
400ms | . . .
o ! Let’s look a the timeline for each thread to understand things better...
I
oms f B T T r , 1
0 50 100 150 200 250

}

Simuttaneously Utiized Logical CPUS

(0] ation Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up Hotspots view

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

¢ BlcollectionLog @ Analysis Target A Analysis Type & Summary & Bottom-up @ Caller/Callee & Top-down Tree I Platform [GSimulation...

P

Grouping: ‘ Module / Function / Call Stack

xal)

CPU Time ¥ < Viewing « 10f 1 + selected stack
Module / Function / Call Stack Effective Time by Utilization » Spin Time » ‘ Overhead Time » Module 100.0% (2.260s of 2.260s)
Oidie @Poor §Ok @lideal @ Over nbodyxIGSimulation: start$omp.
» libiomp5.so 0s 18.660s 0.320s ; libiomp5.s0![OpenMP dispatche
v nbody.x 2260s (D 0.160s { libiomp5.s0![OpenMP fork]+0x1
2.260s 0s | nbody.x [ESTNTETEREERRITEREN nbody.x!GSimulation: start+0x69.
» GSimulation::start 0s GSimulation: start(void) nbody.x!main+0x86 - main.cpp:43

» [Unknown] 0.020s | 0s
< > <
P:i4 — e l0s 01s
g OMP Master Thread #0 (TID
= OMP Worker Thread #60 (TI
OMP Worker Thread #56 (TI
OMP Worker Thread #50 (TI

OMP Worker Thread #55 (T1
OMP Worker Thread #54 (TI
OMP Worker Thread #49 (T
OMP Worker Thread #58 (T1
OMP Worker Thread #59 (T
OMP Worker Thread #61 (T1
OMP Worker Thread #52 (TI
OMP Worker Thread #41 (TI
OMP Worker Thread #47 (Tl
OMP Worker Thread #35 (T
OMP Worker Thread #39 (T

0.160s nbody.x
)s nbodyx!_start+0x28 - start. S:118

1s Ruler Area:
[EEEEEE Y

~ ¥ Region Instance
[0 = OpenMP Barrier-
to-Barrier Segment

[Thread v]
] Running
s CPU Time
Spin and Overhea
[0 @ cPusample

[] cPU Usage

v

FILTER 1000% % | [AnyProcess - | Thiead | any Thread || Any Module

+ |{ Any utiizatio | || Only user functions | Show iniine functic v | | Functions only

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

There is not enough work per thread
in this particular example.

Double click on line to access source
and assembly.

Notice the filtering options at the
bottom, which allow customization of
this view.

Next steps would include additional
analysis to continue the optimization
process.

Intel VTune Amplifier - O X

Z & P b B = O Welcome x

Sis E : Bottom-up

Grouping:| Function / Call Stack - Mx]e])

Function/ Call Stack CPU Time ¥ Z| Module Function (Full) Source File | Start Address ~
) vdpowr_ 18.664s libmkl_intel_Ip64.so vdpowr_ 0x695310
) aa 10.495s distress aa aux.f90 Ox41ecic
) aa 9.674s distress aa aux.f90 Ox41ec9a
» invariants 9.055s distress invariants aux.fo0 0x41d550
» __libm_csqrt_ex 7.792s libimf.so _libm_csqrt_ex Oxc7a50
) spinoru 7.779s distress spinoru aux.fo0 0x41e9e0
> ktjet 7.137s distress ktjet analysis.f90 | 0x420ae0 | :
» __svml_log8_mask_b3 6.056s distress __svml_log8_mask_b3 0x532f50 "
) breit2lab 2.096s distress breit2lab PS.f90 0x4602d0
> getljet 1.857s distress getljet analysis.f90 0x421830
» me0_qlqlgg 1.814s distress me0_qlqlgg amplitudes.f90 0x4408d0
» __libm_acos_|9 1.688s libimf.so __libm_acos_I9 Oxedd80
) analyzejet 1.658s distress analyzejet analysis.f90 1 0x422050
» ds_gl_s_nnlo_qgcd_g 1.605s distress ds_ql_s_nnlo_qgcd_g sub.f90 0x4694e0
:csurt NP 1.384s libimf.so csart 0x1d430 . v

O: s = ¢ e 0s 20s 40s 60s 80s 100s 120s 140s IThread "| o)
§ distress (TID: 55598) [ERunning
£ waCPU Time

#Spin and Overhead ..

[] ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead -

CPU Utilization

e | o
—

Y Any Thread ~| |AnyModue | |AnyUtiizati v | | |Userfunctions+1 | | Show inline funct v

Intel VTune Amplifier - O X

Z & P b B = O Welcome x

Bottom-up

Grouping:| Function / Call Stack

Function / Call Stack CPUTime ¥V | Module Function (Full) Source File Start Address
libmkl_intel_Ip64.so vdpowr_ 0x695310

) aa 7.4% distress aa aux.fo0 Ox41ecic
. SO OSP4+ S 8 e auxfo ...l Oxdlecoa |
invariants 64% distress .. invariants aux.fo0 . 0x41d550
» __libm_csqrt_ex 5.5% libimf.so _libm_csqrt_ex Oxc7a50
) spinoru 5.5% distress spinoru aux.fo0 0x41e9e0
> ktjet 5.0% distress ktjet analysis.f90 0x420ae0 ' :
b __svml_log8_mask_b3 4.3% distress __svml_log8_mask_b3 0x532f50 ' i
) breit2lab 1.5% distress breit2lab PS.f90 0x4602d0
> getljet 1.3% distress getljet analysis.f90 0x421830
» me0_qlqlgg 1.3% distress me0_qlqlgg amplitudes.f90 0x4408d0
» __libm_acos_|9 1.2% libimf.so __libm_acos_I9 Oxedd80
) analyzejet 1.2% distress analyzejet analysis.f90 0x422050
» ds_gl_s_nnlo_qgcd_g 1.1% distress ds_qgl_s_nnlo_qgcd_g sub.f90 0x4694e0
» csart 1.0% ' libimf.so csart 0x1d430 v
< > 1< >
O: s = ¢ e 0s 20s 40s 60s 80s 100s 120s 140s IThread "| o)
§ distress (TID: 55598) [ERunning
£ waCPU Time
#Spin and Overhead ..

[] ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead -

CPU Utilization

e |
—

Y Any Thread ~| |AnyModue | |AnyUtiizati v | | |Userfunctions+1 | |Show inline func{ v

Intel VTune Amplifier

(=

g &% P

©]

Welcome

Bottom-up

INTELVTUNE AMPLIF

Grouping:| Source Function / Function / Call Stack

Source Function / Function / Call Stack CPUTime ¥ /| Module Function (Full) Source File Start Address
) aa 14.2% aa aux.f90 0
» vdpowr_ 13.1% vdpowr_ 0
) invariants 6.4% invariants aux.fo0 0
b __libm_csqrt_ex 5.5% _libm_csqrt_ex 0
) spinoru 5.5% spinoru aux.fo0 0
> ktjet 5.0% ktjet analysis.f90 0
» __svml_log8_mask_b3 4.3% __svml_log8_mask_b3 0
» subqgcd 3.2% subqcd amplitudes.f90 0
) breit2lab 1.6% breit2lab PS.f90 0
» hamp_qglglggb_1 1.4% hamp_gqlqlqgb_1 amplitudes.f90 0
» getljet 1.3% getljet analysis.f90 0
» me0_qglqlgg 1.3% me0_gqlqlgg amplitudes.f90 0
» __libm_acos_I9 1.2% _ libm_acos_IS 0
) analyzejet 1.2% analyzejet analysis.f90 0
» hamp alalaab 2 NP 1.1% hampo alalaab 2 amplitudes.f30 0

Oid = 0

distress (TID: 55598)

Thread

0s 20s 40s 60s 80s 100s 120s 140s [Thread v| -
[ERunning

WaCPU Time
#Spin and Overhead ..
[] ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead -

CPU Utilization

) 5

Any Thread v| |AnyModue v | |Any Utiizati v

User functions +1 v | : Show inline func{ v

e |
—

Intel VTune Amplifier

X N=Re

g &% P

Welcome

Bottom-up

Grouping:| Source Function / Function / Call Stack

/| o]x]
A

CPU Utilization

X

Any Thread | |[98.9%] distres: v | | Any Utilizatic ~

Source Function/ Function / Call Stack CPUTime ¥ /| Module Function (Full) Source File Start Address
27.5% spinoru aux.fo0 0
) invariants 9.0% invariants aux.f90 0
) getpdfs 8.3% getpdfs fitpdf.f90 0
I ktjet 6.9% ktjet analysis.f90 0
» me0_qlqlgg 6.1% me0_qlqlgg amplitudes.f90 0
» __svml_log8_mask_b3 5.9% __svml_log8_mask_b3 0
) breit2lab 2.5% breit2lab PS.f90 0 :
> dli2 2.4% dli2 lis.f90 0 "
) getljet 1.8% getljet analysis.f90 0
) analyzejet 1.6% analyzejet analysis.f90 0
» me0_glqlqgb_f3 1.6% me0_gqlqglggb_f3 amplitudes.f90 0
» ds_gl_s_nnlo_gcd_g 1.6% ds_qgl_s_nnlo_qcd_g sub.f90 0
» me0_qlglqgb_f4 1.3% me0_qlqlgqgb_f4 amplitudes.f90 0
» psé 1.3% ps4 PS.f90 0
» for costr 1.3% for costr 0 v
> < >

O: s = o 0s 20s 40s 60s 80s 100s 120s 140s IThread "| o
§ distress (TID: 55598) [ERunning
£ waCPU Time

#Spin and Overhead ..

[] ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead -

User functions +1 | | Hide inline functic v

e |
—

Intel VTune Amplifier

Nz I (| =

Welcome

Bottom-up

Grouping:| Source Function / Function / Call Stack

Source Function / Function / Call Stack
[Loop at line 264 in spinoru]

CPUTime Vv [

Module

Function (Full)

Source File

Start Address

[] ®CPU Sample

CPU Utilization
WaCPU Time

CPU Utilization

) & Any Thread v | 1[98.9%] distres: - | | Any Utilizatic -

[Loop at line 264 in spinoru] aux.fo0 0

» [Loop at line 141 in nnlobeami] 19.3% [Loop at line 141 in nnlobeami] beamintegrand.f90 0
» [Loop at line 2499 in dxsec_gl_nnlor] 11.1% [Loop at line 2499 in dxsec_gl_nnlor] xsec.f90 0
I [Loop at line 112 in vegas] 10.6% [Loop at line 112 in vegas] vegas.fo0 0
» [Loop at line 2750 in dxsec_gl_nnlov_a] 3.2% [Loop at line 2750 in dxsec_gl_nnlov_a] xsec.f90 0
) [Loop at line 60 in ktjet] 3.1% [Loop at line 60 in ktjet] analysis.f90 0
» [Loop at line 1778 in ds_ql_s_nnlo_qgcd_g 2.9% [Loop at line 1778 in ds_gl_s_nnlo_gcd_g] sub.f90 0
I [Loop at line 181 in invariants] 2.6% [Loop at line 181 in invariants] aux.fo0 0
» [Loop at line 180 in invariants] 2.1% [Loop at line 180 in invariants] aux.f90 0
) [Loop at line 2055 in ds_gl_s_nnlo_gcd_f: 2.0% [Loop at line 2055 in ds_ql_s_nnlo_qcd_f2] sub.f90 0
» [Loop at line 43 in ktjet] 2.0% [Loop at line 43 in kijet] analysis.f90 0
I [Loop at line 1986 in ds_ql_s_nnlo_qgcd_f 1.8% [Loop at line 1986 in ds_ql_s_nnlo_qcd_f1] sub.f90 0
) [Loop at line 1882 in ds_gl_s_nnlo_gcd_g 1.8% [Loop at line 1882 in ds_gl_s_nnlo_gcd_g] sub.f90 0
» [Loop at line 1846 in ds_ql_s_nnlo_qgcd_g 1.8% [Loop at line 1846 in ds_gl_s_nnlo_gcd_g] sub.f90 0
» [Loop at line 1812 inds al s nnlo acd)a . 1.7% [Loop at line 1812 inds al s nnlo acd al sub.f90 0 R

O: s = m 20s 40s 60s 80s 100s 120s 140s |Thread V|
§ distress (TID: 55598) [ERunning
£ WuCPU Time

#Spin and Overhead ..

Spin and Overhead -

User functions+1 | | Show inline functi v

e | s
—

Intel VTune Amplifier

= T S (| =

@

Welcome

Top-down Tree

Grouping:| Call Stack

CPU Utilization

X’

Any Thread | | AnyModue | |Any Utilizatic v

Function Stack CPU Time: Total ¥ »/| CPU Time: Self ' Module | Function (Full) Source File | Start Address I ~
v Total 100.0% Os
v [Outside any loop] 99.9% 0.020s [Outside any loop] 0
v [Loop at line 100 in vegas] 99.6% Os distress [Loop at line 100 in vegas] vegas.fo0 0x4162c8
v [Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.f90 0x416641
v [Loop at line 112 in vegas] 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.f90 0x4166f1
v [Loop at line 2499 in dxsec_ql_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_gl... xsec.f90 0x49ba17
v [Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 Ox41ecd6 .
23.2% 32.939s | distress [Loop at line 264 in spinoru] aux.f90 Ox41edcf |
) [Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 0x41ea94
) [Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.f90 Ox41ec41
) [Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669¢c9
) [Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.so [Loop atline 1169 in LHAPDF:... stl_tree.h 0x66960
) [Loop at line 139 in nnlobeami] 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
» [Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f80 0x420c70
- » [Loop at line 2750 in dxsec o)l . 3.8% 4.494s distress [Loob at line 2750 in dxsec al... 'xsec.f90 0x49d2b2 R v
O: o = ¢ ¢ |0s 20s 40s 60s 80s 100s 120s 140s |Thread V| o)
§ distress (TID: 55598) [ERunning
£ WuCPU Time
#Spin and Overhead ..

[] ®CPU Sample

CPU Utilization

#aCPU Time
Spin and Overhead -

User functions +1 v~ | | Show inline functi -

e | s
—

Funi
Total

R =
Hotspots Hotspots by CPU Utilization + @

HPC Performance Characterization

= & P Welcome

Analysis Configur

Grouping:| Call Sta Hotspots by CPU Utilization

Threading Efficiency

[Outside any loop]
[Loop at line 100 in vegas]
[Loop at line 112 in vegas]
[Loop at line 112 in vegas]
[Loop at line 2499 in dxsec_ql_
[Loop at line 263 in spinoru]
[Loop at line 264 in spinor
[Loop at line 258 in spinoru]
[Loop at line 260 in spinoru]
[Loop at line 2487 in LHAPD
[Loop at line 1169 in LHAPD
[Loop at line 139 in nnlobeami]
[Loop at line 43 in ktjet]
[Loob at line 2750 in dxsec a)l

A

O: +

amplxe_distress__2019-04-10-20-23 x

O

INTELVTUNEAMPLIFIER 2019

Thread

distress (TID: 55598)

Copyright ©
*Other nam

FILTER

CPU Utilization

100.0%

[] ®CPU Sample

CPU Utilization
WaCPU Time

ottom-up Caller/Callee = Top-down Tree Platform aux.f80 x aux.f90 x yd
[[o][~]
al v >/ CPUTime: Self » Modue | Function (Full | SourceFile | StartAddress | A
100.0% Os
99.9% 0.020s [Outside any loop] 0
99.6% Os distress [Loop at line 100 in vegas] vegas.f90 0x4162c8
99.6% 1.531s distress [Loop at line 112 in vegas] vegas.fo0 0x416641
98.2% 13.427s distress [Loop at line 112 in vegas] vegas.fo0 0x4166f1
36.9% 15.606s distress [Loop at line 2499 in dxsec_qgl... xsec.f90 0x49ba17
24.2% 1.422s distress [Loop at line 263 in spinoru] aux.f90 0x41ecd6
23.2% 32.939s distress [Loop at line 264 in spinoru] aux.fo0 Ox41edcf
1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 0x41ea94
0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 0x41ecé1
0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669¢9
0.1% 0.036s libLHAPDF.so [Loop atline 1169 in LHAPDF:... stl_tree.h 0x66960
19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 0x420c70
3.8% 4.494s distress [Loob at line 2750 in dxsec al... 'xsec.f90 0x49d2b2 v
o A e e 0 R [Thread -
#aCPU Time
#Spin and Overhead ...

#Spin and Overhead ...

% | |AnyProcess v| |AnyThread v| |AnyModuIe v| |AnyUtiIizati(vl | IUserfunctions+1

vl |Showinlinefunctivl ILoopsonly

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The “application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

& Basic Hotepota J Hotpots by CPU|Usage viewpoint (Dange) [INTELVTUNE AMPLIFIER2018

e L B A B e - Naive implementation of the calculation of

Elapsed Time : 209.598s

Top Hotspots a covariance matrix

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance. 1

Function Module CPU Time
F covpy 113533s !
covpy 91.587s
el Summary shows:
ame(s)] 1.260s y e
covpy 0.588s

PU Usage Histogram = Single thread execution

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idie CPU usage value

= Top function is “naive”

| | | | Click on top function to go to Bottom-up

Simuitaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

@ Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ | AMPLIFIER 2018
2 [JCollection Log O Analysis Target A Analysis Type # Summary @ Bottom-up @3 Caller/Callee @ Top-down Tree ' Platform [3 cov.py . / b
Grouping:| Module / Function / Call Stack [« CPU Time V]
CPU Time v ~ | Viewing < 10f1 » selected stack(s)
Module / Function / Call Stack Ti » Module 100.0% (112.473s of 112.473s)
0idie E;e;;': mé:yknl:;:}m.mer | S nel PO covpylnaive - covpy
v covpy 2037285 2280s 0s covpylmain+0x42 - covpy:200
v naive 111.873s D 1.660s 0s covpy naive(fullArray) covpyl<module>+0x221 - covpy.
v main 110.633s (D 1.660s 0s covpy main() python2.71_start+0x28 - [unknow.
110813s | 16605 05| coupy <moduie>
» [main — <module> — _star covpy main()
» B naive — main — <module> | 1.040s 0s 0s covpy naive(fullArray)
» <genexpr> 90.967s (D 0620s 0s covpy naive@<genexpr>
» <module> 0.588s 0s 0s covpy <module>
» main 0.300s 0Os 0s covpy main()
» [Unknown] 2720s | 0s 0s
» libc-dynamic so 1
» python2.7
» libpin3dwarf so
» trarkdanc en)4 hd
< >|l< >
O + 0s 505 100s 150s 200s & [Thwead e
g [maCPU Time
s Spin and Overhead Ti
[@ cPu Sample

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
1 EJCollectionLog D Analysis Target A Analysis Type & Summary & Bottom-up @ Caller/Callee & Top-down Tree ‘=

Assembly % & % Q Assembly grouping: Function Range / Basic Block / Address
CPU Time:
Sou.. Source Effective Time by U
Line y Utili
| @idie @Poor ok Wide:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros((numRows, 1), dtype=float))
63 for j in range (numRows) : |
64 normArrays (i) [j]1=fullArray(:, i][j)-np.mean(fullArray(:, i 6.3%-
65
66
67 # calculate covariance and populate results array
68 for i in range (numCols):
69 for j in range (numCols): |
70 result(i,j] = sum(p*g for p,q in zip(
71 normArrays(i],normArrays[j]))/ (numRows)
72
73 end = time.time()
74 print('overall runtime = ' + str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

When do | use Vtune vs Advisor?

Vtune

What’s my cache hit ratio?

Which loop/function is consuming most
time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Which vector ISA am | using?

How is time spent starting from
entering my binary? (top-down)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

Remember

Compile with -g and -dynamic
Profile 1 rank - amplxe.qsub/advixe.qsub
Advisor for big picture

Vtune for details

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Resources

Product Pages
= https://software.intel.com/sites/products/snapshots/application-snapshot
= https://software.intel.com/en-us/advisor

= https://software.intel.com/en-us/intel-vtune-amplifier-xe

Detailed Articles
= https://software.intel.com/en-us/articles/intel-advisor-on-cray-systems
= https://software.intel.com/en-us/articles/using-intel-advisor-and-vtune-amplifier-with-mpi

= https://software.intel.com/en-us/articles/profiling-python-with-intel-vtune-amplifier-a-covariance-
demonstration

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

EMON Collection

General Exploration analysis may be performed using EMON

= Reduced size of collected data

= Qverall program data, no link to actual source (only summary)
= Useful for initial analysis of production and large scale runs

= Currently available as experimental feature

export AMPLXE EXPERIMENTAL=emon

aprun [..] amplxe-cl —-c general-exploration -knob summary-mode=truel..]

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

T
lntel 65

